Exam Geometry WIMTK-08

January 20, 2015

Note: Usage of Do Carmo's textbook is allowed. Give a precise reference to the theory you use for solving the problems. You may *not* use the result of any of the exercises.

Problem 1 (5+5+7+5+8=30 pts.)

Let $\alpha : \mathbb{R} \to \mathbb{R}^3$ be a unit speed curve with Frenet-Serret frame $\{t(s), n(s), b(s)\}$ at $\alpha(s)$. The curvature and torsion at $\alpha(s)$ are denoted by k(s) and $\tau(s)$, respectively. The *Darboux vector* $\omega(s)$ of the curve at $\alpha(s)$ is given by

$$\omega(s) = \tau(s)t(s) - k(s)b(s).$$

1. Show that the Frenet-Serret identities are equivalent with

$$t' = t \wedge \omega,$$

 $n' = n \wedge \omega,$
 $b' = b \wedge \omega.$

2. Show that the Darboux vector is constant if and only if the curvature and the torsion are constant.

Let v(s) be the unit vector field along α defined by $v = \beta^{-1}\omega$, with $\beta = \sqrt{k^2 + \tau^2}$. Let $u(s) = v(s) \wedge n(s)$, then $\{u(s), v(s), n(s)\}$ is an orthonormal moving frame. From now on assume that k and τ are constant.

3. Show that the moving frame $\{u(s), v(s), n(s)\}$ satisfies the identities

$$\begin{aligned} \mathfrak{u}' &= & \beta \mathfrak{n}, \\ \mathfrak{n}' &= & -\beta \mathfrak{u}, \\ \mathfrak{v}' &= & \mathbf{0}. \end{aligned}$$

Let $u_0 = u(0), n_0 = n(0)$ and $v_0 = v(0)$.

- 4. Show that $u(s) = \cos(\beta s) u_0 + \sin(\beta s) n_0$. Express n(s) and v(s) in terms of β , s and u_0, n_0, v_0 .
- 5. Determine an expression for α(s) in terms of of α(0), k, τ, s and u₀, n₀, v₀, and show that the curve lies on a circular cylinder with radius r := kβ⁻², the axis of which is the line with direction v through the point α(0) + rn₀. (Hint: express the unit vector t(s) in terms of the frame {u(s), v(s), n(s)}.)

Problem 2 (20+10 = 30 pts.)

Let $\mathbf{x} = \mathbf{x}(\mathbf{u}, \mathbf{v})$ be a regular parameterised surface. Define the offset surface by

$$\mathbf{y}(\mathbf{u},\mathbf{v}) = \mathbf{x}(\mathbf{u},\mathbf{v}) + \varepsilon \mathbf{N}(\mathbf{u},\mathbf{v}),$$

where $\varepsilon > 0$ is a small constant. For the solution of this exercise, you may want to consider the matrix (a_{ij}) that represents dN_p in the basis $\{x_u, x_v\}$, however you should have no need to explicitly compute (or look up expressions for) the coefficients of this matrix.

1. Show that

$$\mathbf{y}_{\mathbf{u}} \wedge \mathbf{y}_{\mathbf{v}} = (1 - 2\varepsilon \mathbf{H} + \varepsilon^{2} \mathbf{K}) \mathbf{x}_{\mathbf{u}} \wedge \mathbf{x}_{\mathbf{v}},$$

where H and K are the mean and Gaussian curvatures of x.

2. Assume that ε is small enough that $(1 - 2\varepsilon H + \varepsilon^2 K) > 0$. Let \tilde{K} and \tilde{H} be the Gaussian and mean curvatures of y. Show that

$$\tilde{K} = \frac{K}{1 - 2\varepsilon H + \varepsilon^2 K}$$

and

$$\tilde{H} = \frac{H - \varepsilon K}{1 - 2\varepsilon H + \varepsilon^2 K}.$$

Hint: What is the expression for \tilde{N} in terms of $\{N, x_u, x_v\}$?

Problem 3 (10 + 12 + 8 = 30 pts.)

Let C be a regular curve (without self-intersections) in the half-plane $\{(x, 0, z) | x > 0\}$. Let S be the surface of revolution in \mathbb{R}^3 obtained by rotating C about the z-axis. It is convenient to use use the parameterisation

$$\mathbf{x}(\mathbf{u},\mathbf{v}) = (f(\mathbf{v})\cos \mathbf{u}, f(\mathbf{v})\sin \mathbf{u}, g(\mathbf{v})),$$

such that $\nu \mapsto (f(\nu), 0, g(\nu))$ is an arc-length parameterisation of C.

1. Let p and q be two points on C, and let $w_p \in T_pS$ be a unit tangent vector making an angle φ_0 with (the tangent line of) C at p. Let w_q be the vector obtained by parallel transporting w_p from p to q along C. Prove that w_q also makes an angle φ_0 with this meridian.

Consider a point $p \in C$. Let Γ be the parallel circle of S through p. Let $\overline{w}_p \in T_pS$ be the vector obtained by parallel transporting w_p once around Γ . Let ϑ_0 be the angle between T_pS and the horizontal plane through p.

- 2. Express the angle $\Delta \phi$ between w_p and \overline{w}_p in terms of ϑ_0 .
- 3. Prove that $\Delta \phi$ is zero if and only if Γ is a geodesic of S.