Exam Geometry WIMTK-08

January 20, 2015
Note: Usage of Do Carmo's textbook is allowed. Give a precise reference to the theory you use for solving the problems. You may not use the result of any of the exercises.

Problem 1 ($5+5+7+5+8=30$ pts.)
Let $\alpha: \mathbb{R} \rightarrow \mathbb{R}^{3}$ be a unit speed curve with Frenet-Serret frame $\{t(s), n(s), b(s)\}$ at $\alpha(s)$. The curvature and torsion at $\alpha(s)$ are denoted by $k(s)$ and $\tau(s)$, respectively. The Darboux vector $\omega(s)$ of the curve at $\alpha(s)$ is given by

$$
\omega(s)=\tau(s) t(s)-k(s) b(s) .
$$

1. Show that the Frenet-Serret identities are equivalent with

$$
\begin{aligned}
\mathrm{t}^{\prime} & =\mathrm{t} \wedge \omega, \\
\mathrm{n}^{\prime} & =\mathrm{n} \wedge \omega, \\
\mathrm{~b}^{\prime} & =\mathrm{b} \wedge \omega .
\end{aligned}
$$

2. Show that the Darboux vector is constant if and only if the curvature and the torsion are constant.

Let $v(s)$ be the unit vector field along α defined by $v=\beta^{-1} \omega$, with $\beta=\sqrt{k^{2}+\tau^{2}}$. Let $\mathfrak{u}(s)=v(s) \wedge \mathfrak{n}(s)$, then $\{u(s), v(s), \mathfrak{n}(s)\}$ is an orthonormal moving frame. From now on assume that k and τ are constant.
3. Show that the moving frame $\{\mathfrak{u}(s), v(s), \mathfrak{n}(s)\}$ satisfies the identities

$$
\begin{aligned}
u^{\prime} & =\beta n \\
n^{\prime} & =-\beta u \\
v^{\prime} & =0
\end{aligned}
$$

Let $u_{0}=u(0), n_{0}=n(0)$ and $v_{0}=v(0)$.
4. Show that $u(s)=\cos (\beta s) u_{0}+\sin (\beta s) n_{0}$. Express $n(s)$ and $v(s)$ in terms of β, s and u_{0}, n_{0}, v_{0}.
5. Determine an expression for $\alpha(s)$ in terms of of $\alpha(0), k, \tau, s$ and u_{0}, n_{0}, v_{0}, and show that the curve lies on a circular cylinder with radius $\mathrm{r}:=\mathrm{k} \beta^{-2}$, the axis of which is the line with direction v through the point $\alpha(0)+\mathrm{rn}_{0}$.
(Hint: express the unit vector $t(s)$ in terms of the frame $\{u(s), v(s), n(s)\}$.)

Problem 2 ($20+10=30$ pts.)
Let $x=\boldsymbol{x}(u, v)$ be a regular parameterised surface. Define the offset surface by

$$
\mathbf{y}(u, v)=\boldsymbol{x}(u, v)+\varepsilon N(u, v),
$$

where $\varepsilon>0$ is a small constant. For the solution of this exercise, you may want to consider the matrix ($\mathrm{a}_{\mathfrak{i j}}$) that represents $\mathrm{d} \mathrm{N}_{\mathrm{p}}$ in the basis $\left\{\mathrm{x}_{\mathfrak{u}}, \mathrm{x}_{v}\right\}$, however you should have no need to explicitly compute (or look up expressions for) the coefficients of this matrix.

1. Show that

$$
\boldsymbol{y}_{\mathfrak{u}} \wedge \mathbf{y}_{v}=\left(1-2 \varepsilon \mathrm{H}+\varepsilon^{2} \mathrm{~K}\right) \boldsymbol{x}_{\mathfrak{u}} \wedge \boldsymbol{x}_{v}
$$

where H and K are the mean and Gaussian curvatures of \boldsymbol{x}.
2. Assume that ε is small enough that $\left(1-2 \varepsilon \mathrm{H}+\varepsilon^{2} \mathrm{~K}\right)>0$. Let $\tilde{\mathrm{K}}$ and $\tilde{\mathrm{H}}$ be the Gaussian and mean curvatures of \mathbf{y}. Show that

$$
\tilde{\mathrm{K}}=\frac{\mathrm{K}}{1-2 \varepsilon \mathrm{H}+\varepsilon^{2} \mathrm{~K}}
$$

and

$$
\tilde{\mathrm{H}}=\frac{\mathrm{H}-\varepsilon \mathrm{K}}{1-2 \varepsilon \mathrm{H}+\varepsilon^{2} \mathrm{~K}} .
$$

Hint: What is the expression for \tilde{N} in terms of $\left\{\mathrm{N}, \boldsymbol{x}_{\mathfrak{u}}, \boldsymbol{x}_{v}\right\}$?
Problem 3 ($10+12+8=30$ pts.)
Let C be a regular curve (without self-intersections) in the half-plane $\{(x, 0, z) \mid x>0\}$. Let S be the surface of revolution in \mathbb{R}^{3} obtained by rotating C about the z-axis. It is convenient to use use the parameterisation

$$
x(u, v)=(f(v) \cos u, f(v) \sin u, g(v))
$$

such that $v \mapsto(f(v), 0, g(v))$ is an arc-length parameterisation of C.

1. Let p and q be two points on C, and let $w_{p} \in T_{p} S$ be a unit tangent vector making an angle φ_{0} with (the tangent line of) C at p. Let w_{q} be the vector obtained by parallel transporting w_{p} from p to q along C. Prove that w_{q} also makes an angle φ_{0} with this meridian.

Consider a point $p \in C$. Let Γ be the parallel circle of S through p. Let $\bar{w}_{p} \in T_{p} S$ be the vector obtained by parallel transporting w_{p} once around Γ. Let ϑ_{0} be the angle between $T_{p} S$ and the horizontal plane through p.
2. Express the angle $\Delta \varphi$ between w_{p} and \bar{w}_{p} in terms of ϑ_{0}.
3. Prove that $\Delta \varphi$ is zero if and only if Γ is a geodesic of S.

